→高次微分方程式の取り扱い
109行目: | 109行目: | ||
<math>\frac{d \boldsymbol{x}(t)}{dt} = \boldsymbol{f}(\boldsymbol{x}(t), t) \quad , \ \boldsymbol{x}(0) = \boldsymbol{x}_0</math> | <math>\frac{d \boldsymbol{x}(t)}{dt} = \boldsymbol{f}(\boldsymbol{x}(t), t) \quad , \ \boldsymbol{x}(0) = \boldsymbol{x}_0</math> | ||
ここで, | ここで,<math>\boldsymbol{f}(\boldsymbol{x}(t), t)<math>は以下となります. | ||
<math>\boldsymbol{f}(\boldsymbol{x}(t), t) = \left(\begin{array}{c}x_2(t)\\- \frac{g}{l} \sin x_1(t) - \frac{c}{m} x_2(t) \end{array}\right)</math> | <math>\boldsymbol{f}(\boldsymbol{x}(t), t) = \left(\begin{array}{c}x_2(t)\\- \frac{g}{l} \sin x_1(t) - \frac{c}{m} x_2(t) \end{array}\right)</math> | ||
146行目: | 146行目: | ||
xlabel('time (s)'); | xlabel('time (s)'); | ||
ylabel('theta (rad)'); | ylabel('theta (rad)'); | ||
== ルンゲ・クッタ法によるシミュレーション == | == ルンゲ・クッタ法によるシミュレーション == |