「周波数応答」の版間の差分

提供:東海大学 コンピュータ応用工学科 稲葉研究室Wiki
ナビゲーションに移動 検索に移動
編集の要約なし
15行目: 15行目:




図\ref{sin_res_2nd}は,伝達関数<math>\displaystyle \frac{1}{s^2 + 0.5s + 1}</math>に<math>\omega=</math>0.1, 1, 10 [rad/s]の3種類の正弦波を入力した時の応答をMATLAB(Octave)の\texttt{lsim}関数で計算した結果である(リスト\ref{sample2_1}).
図\ref{sin_res_2nd}は,伝達関数<math> \frac{1}{s^2 + 0.5s + 1}</math>に<math>\omega=</math>0.1, 1, 10 [rad/s]の3種類の正弦波を入力した時の応答をMATLAB(Octave)の\texttt{lsim}関数で計算した結果である(リスト\ref{sample2_1}).

2015年5月8日 (金) 22:08時点における版

周波数応答とは

ゲインと位相

線形なシステムに正弦波入力を加えると,定常状態では出力も正弦波となる.出力の正弦波の周波数は入力と同じになるが,振幅の変化や位相差が発生する. 入力の正弦波を,定常状態での出力をとし,それぞれ次式で表されるとする.

このとき,入力に対する出力の振幅比をゲインを位相(位相差)と呼ぶ.ゲインと位相は入力の周波数に応じて変化する.


図\ref{sin_res_2nd}は,伝達関数0.1, 1, 10 [rad/s]の3種類の正弦波を入力した時の応答をMATLAB(Octave)の\texttt{lsim}関数で計算した結果である(リスト\ref{sample2_1}).